Hypoxia-induced lncRNA-NUTF2P3-001 contributes to tumorigenesis of pancreatic cancer by derepressing the miR-3923/KRAS pathway

Oncotarget. 2016 Feb 2;7(5):6000-14. doi: 10.18632/oncotarget.6830.

Abstract

Recent studies indicate that long non-coding RNAs (lncRNAs) play crucial roles in numerous cancers, while their function in pancreatic cancer is rarely elucidated. The present study identifies a functional lncRNA and its potential role in tumorigenesis of pancreatic cancer. Microarray co-assay for lncRNAs and mRNAs demonstrates that lncRNA-NUTF2P3-001 is remarkably overexpressed in pancreatic cancer and chronic pancreatitis tissues, which positively correlates with KRAS mRNA expression. After downregulating lncRNA-NUTF2P3-001, the proliferation and invasion of pancreatic cancer cell are significantly inhibited both in vitro and vivo, accompanying with decreased KRAS expression. The dual-luciferase reporter assay further validates that lncRNA-NUTF2P3-001 and 3'UTR of KRAS mRNA competitively bind with miR-3923. Furthermore, miR-3923 overexpression simulates the inhibiting effects of lncRNA-NUTF2P3-001-siRNA on pancreatic cancer cell, which is rescued by miR-3923 inhibitor. Specifically, the present study further reveals that lncRNA-NUTF2P3-001 is upregulated in pancreatic cancer cells under hypoxia and CoCl2 treatment, which is attributed to the binding of hypoxia-inducible factor-1α (HIF-1α) to hypoxia response elements (HREs) in the upstream of KRAS promoter. Data from pancreatic cancer patients show a positive correlation between lncRNA-NUTF2P3-001 and KRAS, which is associated with advanced tumor stage and worse prognosis. Hence, our data provide a new lncRNA-mediated regulatory mechanism for the tumor oncogene KRAS and implicate that lncRNA-NUTF2P3-001 and miR-3923 can be applied as novel predictors and therapeutic targets for pancreatic cancer.

Keywords: HIF-1α; KRAS; lncRNAs; miRNAs; pancreatic cancer.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Carcinogenesis / genetics
  • Cell Hypoxia / physiology
  • Cell Line, Tumor
  • Cell Proliferation / physiology
  • Humans
  • Hypoxia-Inducible Factor 1, alpha Subunit / metabolism*
  • Male
  • Mice
  • Mice, Inbred BALB C
  • Mice, Nude
  • MicroRNAs / genetics
  • MicroRNAs / metabolism*
  • Pancreatic Neoplasms / genetics
  • Pancreatic Neoplasms / metabolism*
  • Pancreatic Neoplasms / pathology
  • Proto-Oncogene Proteins p21(ras) / genetics
  • Proto-Oncogene Proteins p21(ras) / metabolism*
  • RNA, Long Noncoding / biosynthesis*
  • RNA, Long Noncoding / genetics

Substances

  • Hypoxia-Inducible Factor 1, alpha Subunit
  • KRAS protein, human
  • MicroRNAs
  • RNA, Long Noncoding
  • Proto-Oncogene Proteins p21(ras)