MgxZn1-xO/Ag/MgxZn1-xO Multilayers As High-Performance Transparent Conductive Electrodes

ACS Appl Mater Interfaces. 2016 Jan 27;8(3):1565-70. doi: 10.1021/acsami.5b09974. Epub 2016 Jan 13.

Abstract

We report on the optical and electrical properties of MgxZn1-xO/Ag/MgxZn1-xO transparent conductive electrodes. The transmittance and sheet resistance of MgxZn1-xO/Ag/MgxZn1-xO multilayers deposited at room temperature were strongly dependent on the thickness and surface morphology of Ag layer. The optical absorption edge of MgxZn1-xO/Ag/MgxZn1-xO showed a blue shift with increasing Mg composition due to the increased band gap of MgxZn1-xO. The Haack figure of merit value of Mg0.28Zn0.72O/Ag/Mg0.28Zn0.72O with a 14 nm-thick Ag layer, which has a sheet resistance of 6.36 Ω/sq and an average transmittance of 89.2% at wavelengths in the range from 350 to 780 nm, was 69% higher than that of a ZnO/Ag/ZnO multilayer electrode. These results indicate that MgxZn1-xO/Ag/MgxZn1-xO multilayers, which also show low surface roughness, can be used as highly conductive transparent electrodes in various optoelectronic devices operating over a wide wavelength region.

Keywords: MgZnO; band gap engineering; multilayers; surface roughness; transparent electrode.

Publication types

  • Research Support, Non-U.S. Gov't