Using wearable sensors for semiology-independent seizure detection - towards ambulatory monitoring of epilepsy

Annu Int Conf IEEE Eng Med Biol Soc. 2015 Aug:2015:5593-6. doi: 10.1109/EMBC.2015.7319660.

Abstract

Epilepsy is a disease of the central nervous system. Nearly 70% of people with epilepsy respond to a proper treatment, but for a successful therapy of epilepsy, physicians need to know if and when seizures occur. The gold standard diagnosis tool video-electroencephalography (vEEG) requires patients to stay at hospital for several days. A wearable sensor system, e.g. a wristband, serving as diagnostic tool or event monitor, would allow unobtrusive ambulatory long-term monitoring while reducing costs. Previous studies showed that seizures with motor symptoms such as generalized tonic-clonic seizures can be detected by measuring the electrodermal activity (EDA) and motion measuring acceleration (ACC). In this study, EDA and ACC from 8 patients were analyzed. In extension to previous studies, different types of seizures, including seizures without motor activity, were taken into account. A hierarchical classification approach was implemented in order to detect different types of epileptic seizures using data from wearable sensors. Using a k-nearest neighbor (kNN) classifier an overall sensitivity of 89.1% and an overall specificity of 93.1% were achieved, for seizures without motor activity the sensitivity was 97.1% and the specificity was 92.9%. The presented method is a first step towards a reliable ambulatory monitoring system for epileptic seizures with and without motor activity.

MeSH terms

  • Clothing
  • Electroencephalography
  • Epilepsy
  • Humans
  • Monitoring, Ambulatory
  • Seizures*