Monitoring Activity for Recognition of Illness in Experimentally Infected Weaned Piglets Using Received Signal Strength Indication ZigBee-based Wireless Acceleration Sensor

Asian-Australas J Anim Sci. 2016 Jan;29(1):149-56. doi: 10.5713/ajas.15.0221.

Abstract

In this experiment, we proposed and implemented a disease forecasting system using a received signal strength indication ZigBee-based wireless network with a 3-axis acceleration sensor to detect illness at an early stage by monitoring movement of experimentally infected weaned piglets. Twenty seven piglets were divided into control, Salmonella enteritidis (SE) infection, and Escherichia coli (EC) infection group, and their movements were monitored for five days using wireless sensor nodes on their backs. Data generated showed the 3-axis movement of piglets (X-axis: left and right direction, Y-axis: anteroposterior direction, and Z-axis: up and down direction) at five different time periods. Piglets in both infected groups had lower weight gain and feed intake, as well as higher feed conversion ratios than the control group (p<0.05). Infection with SE and EC resulted in reduced body temperature of the piglets at day 2, 4, and 5 (p<0.05). The early morning X-axis movement did not differ between groups; however, the Y-axis movement was higher in the EC group (day 1 and 2), and the Z-axis movement was higher in the EC (day 1) and SE group (day 4) during different experimental periods (p<0.05). The morning X and Y-axis movement did not differ between treatment groups. However, the Z-axis movement was higher in both infected groups at day 1 and lower at day 4 compared to the control (p<0.05). The midday X-axis movement was significantly lower in both infected groups (day 4 and 5) compared to the control (p<0.05), whereas the Y-axis movement did not differ. The Z-axis movement was highest in the SE group at day 1 and 2 and lower at day 4 and 5 (p<0.05). Evening X-axis movement was highest in the control group throughout the experimental period. During day 1 and 2, the Z-axis movement was higher in both of the infected groups; whereas it was lower in the SE group during day 3 and 4 (p<0.05). During day 1 and 2, the night X-axis movement was lower and the Z-axis movement was higher in the infected piglets (p<0.05). Overall, the movement of infected piglets was altered, and the acceleration sensor could be successfully employed for monitoring pig activity.

Keywords: Acceleration Sensor; Bacterial Infection; Pig Activity; Wireless Sensor Network.