Epitaxial 2D MoSe2 (HfSe2) Semiconductor/2D TaSe2 Metal van der Waals Heterostructures

ACS Appl Mater Interfaces. 2016 Jan 27;8(3):1836-41. doi: 10.1021/acsami.5b09743. Epub 2016 Jan 15.

Abstract

Molecular beam epitaxy of 2D metal TaSe2/2D MoSe2 (HfSe2) semiconductor heterostructures on epi-AlN(0001)/Si(111) substrates is reported. Electron diffraction reveals an in-plane orientation indicative of van der Waals epitaxy, whereas electronic band imaging supported by first-principles calculations and X-ray photoelectron spectroscopy indicate the presence of a dominant trigonal prismatic 2H-TaSe2 phase and a minor contribution from octahedrally coordinated TaSe2, which is present in TaSe2/AlN and TaSe2/HfSe2/AlN but notably absent in the TaSe2/MoSe2/AlN, indicating superior structural quality of TaSe2 grown on MoSe2. Apart from its structural and chemical compatibility with the selenide semiconductors, TaSe2 has a workfunction of 5.5 eV as measured by ultraviolet photoelectron spectroscopy, which matches very well with the semiconductor workfunctions, implying that epi-TaSe2 can be used for low-resistivity contacts to MoSe2 and HfSe2.

Keywords: HfSe2; MoSe2; TaSe2; metal/semiconductor contacts; molecular beam epitaxy; van der Waals heterostructures.

Publication types

  • Research Support, Non-U.S. Gov't