On the Reliability of a Solitary Wave Based Transducer to Determine the Characteristics of Some Materials

Sensors (Basel). 2015 Dec 23;16(1):5. doi: 10.3390/s16010005.

Abstract

In the study presented in this article we investigated the feasibility and the reliability of a transducer design for the nondestructive evaluation (NDE) of the stiffness of structural materials. The NDE method is based on the propagation of highly nonlinear solitary waves (HNSWs) along a one-dimensional chain of spherical particles that is in contact with the material to be assessed. The chain is part of a built-in system designed and assembled to excite and detect HNSWs, and to exploit the dynamic interaction between the particles and the material to be inspected. This interaction influences the time-of-flight and the amplitude of the solitary pulses reflected at the transducer/material interface. The results of this study show that certain features of the waves are dependent on the modulus of elasticity of the material and that the built-in system is reliable. In the future the proposed NDE method may provide a cost-effective tool for the rapid assessment of materials' modulus.

Keywords: concrete; highly nonlinear solitary waves; magnetostrictive sensors; modulus of elasticity; nondestructive evaluation.