Palladium-benzodiazepine derivatives as promising metallodrugs for the development of antiepileptic therapies

J Inorg Biochem. 2016 Feb:155:129-35. doi: 10.1016/j.jinorgbio.2015.11.024. Epub 2015 Dec 2.

Abstract

We synthesized two organometallic diazepam-palladium(II) derivatives by C-H activation of diazepam (DZP) with palladium salts, i.e., PdCl2 and Pd(OAc)2 (OAc=acetate). Both compounds obtained are air stable and were isolated in good yields. The anticonvulsant potential of the complexes, labeled [(DZP)PdCl]2 and [(DZP)PdOAc]2, was evaluated through two animal models: pentylenetetrazole (PTZ)- and picrotoxin (PTX)-induced convulsions. The organometallic DZP-palladium(II) acetate complex, [(DZP)PdOAc]2, significantly increased (p<0.01 or p<0.001) latencies and protected the animals against convulsions induced by PTZ and PTX, while the analogous chloro derivative, [(DZP)PdCl]2, was effective (p<0.01) only in the PTZ model. These effects appear to be mediated through the GABAergic system. The possible mechanism of action of the DZP-palladium(II) complexes was also confirmed with the use of flumazenil (FLU), a GABAA-benzodiazepine receptor complex site antagonist. Herein, we present the first report of the anticonvulsant properties of organometallic DZP-palladium(II) complexes as well as evidence that these compounds may play an important role in the study of new drugs to treat patients with epilepsy.

Keywords: Benzodiazepine; Convulsion; Diazepam; Epilepsy; Palladacycles.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Anticonvulsants / chemistry
  • Anticonvulsants / pharmacology*
  • Benzodiazepines / chemistry*
  • Male
  • Mice
  • Palladium / chemistry*

Substances

  • Anticonvulsants
  • Benzodiazepines
  • Palladium