Selenium isotope evidence for progressive oxidation of the Neoproterozoic biosphere

Nat Commun. 2015 Dec 18:6:10157. doi: 10.1038/ncomms10157.

Abstract

Neoproterozoic (1,000-542 Myr ago) Earth experienced profound environmental change, including 'snowball' glaciations, oxygenation and the appearance of animals. However, an integrated understanding of these events remains elusive, partly because proxies that track subtle oceanic or atmospheric redox trends are lacking. Here we utilize selenium (Se) isotopes as a tracer of Earth redox conditions. We find temporal trends towards lower δ(82/76)Se values in shales before and after all Neoproterozoic glaciations, which we interpret as incomplete reduction of Se oxyanions. Trends suggest that deep-ocean Se oxyanion concentrations increased because of progressive atmospheric and deep-ocean oxidation. Immediately after the Marinoan glaciation, higher δ(82/76)Se values superpose the general decline. This may indicate less oxic conditions with lower availability of oxyanions or increased bioproductivity along continental margins that captured heavy seawater δ(82/76)Se into buried organics. Overall, increased ocean oxidation and atmospheric O2 extended over at least 100 million years, setting the stage for early animal evolution.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Atmosphere*
  • Earth, Planet
  • Geologic Sediments / analysis
  • Geologic Sediments / chemistry*
  • Isotopes
  • Oxidation-Reduction
  • Oxygen*
  • Seawater*
  • Selenium / analysis
  • Selenium / chemistry*

Substances

  • Isotopes
  • Selenium
  • Oxygen