Physical characterization and in vivo pharmacokinetic study of self-assembling amphotericin B-loaded lecithin-based mixed polymeric micelles

Int J Nanomedicine. 2015 Dec 2:10:7265-74. doi: 10.2147/IJN.S95194. eCollection 2015.

Abstract

To alleviate the inherent problems of amphotericin B (AmB), such as poor water solubility and nephrotoxicity, a novel self-assembling mixed polymeric micelle delivery system based on lecithin and combined with amphiphilic polymers, Pluronic(®), Kolliphor(®), d-alpha tocopheryl polyethylene glycol succinate, and 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-methoxy(poly(ethylene glycol)-2000 (DSPE-PEG2K) was developed. An optimal formulation (Ambicelles) composed of AmB:lecithin:DSPE-PEG2K in a 1:1:10 weight ratio was obtained. The particle size, polydispersion index, drug encapsulation efficiency, and drug loading were 187.20±10.55 nm, 0.51±0.017, 90.14%, and 7.51%, respectively, and the solubility was increased from 0.001 to 5 mg/mL. Compared with that of Fungizone(®), the bioavailability of Ambicelles administered intravenously and orally increased 2.18- and 1.50-fold, respectively. Regarding the in vitro cytotoxicity, Ambicelles had a higher cell viability than free AmB solution or Fungizone(®) did. With pretreatment of 50 μg/mL ethanolic extract of Taiwanofungus camphoratus followed by AmB to HT29 colon cancer cells, the 50% inhibitory concentration of AmB solution was 12 μg/mL, whereas that of Ambicelles was 1 μg/mL, indicating that Ambicelles exerted a greater synergistic anticancer effect.

Keywords: DSPE-PEG; amphiphilic polymer; amphotericin B; lecithin; micelle.

MeSH terms

  • Administration, Intravenous
  • Administration, Oral
  • Amphotericin B / administration & dosage
  • Amphotericin B / blood
  • Amphotericin B / pharmacokinetics*
  • Amphotericin B / pharmacology
  • Animals
  • Biological Availability
  • HT29 Cells
  • Humans
  • Lecithins / chemistry*
  • Male
  • Micelles*
  • Microscopy, Electron, Transmission
  • Particle Size
  • Phosphatidylethanolamines / chemistry
  • Polyethylene Glycols / chemistry
  • Polymers / chemistry*
  • Rats, Sprague-Dawley
  • Solubility
  • Time Factors
  • Vitamin E / analogs & derivatives
  • Vitamin E / chemistry

Substances

  • Lecithins
  • Micelles
  • Phosphatidylethanolamines
  • Polymers
  • Vitamin E
  • Polyethylene Glycols
  • Amphotericin B
  • tocophersolan