Epitaxial Stabilization between Intermetallic and Carbide Domains in the Structures of Mn16SiC4 and Mn17Si2C4

J Am Chem Soc. 2016 Jan 13;138(1):248-56. doi: 10.1021/jacs.5b10355. Epub 2015 Dec 22.

Abstract

The concept of frustration between competing geometrical or bonding motifs is frequently evoked in explaining complex phenomena in the structures and properties of materials. This idea is of particular importance for metallic systems, where frustration forms the basis for the design of metallic glasses, a source of diverse magnetic phenomena, and a rationale for the existence of intermetallics with giant unit cells containing thousands of atoms. Unlike soft materials, however, where conflicts can be synthetically encoded in the molecular structure, staging frustration in the metallic state is challenging due to the ease of macroscopic segregation of incompatible components. In this Article, we illustrate one approach for inducing the intergrowth of incompatible bonding motifs with the synthesis and characterization of two new intermetallic carbides: Mn16SiC4 (mC42) and Mn17Si2C4 (mP46). Similar to the phases Mn5SiC and Mn8Si2C in the Mn-Si-C system, these compounds appear as intergrowths of Mn3C and tetrahedrally close-packed (TCP) regions reminiscent of Mn-rich Mn-Si phases. The nearly complete spatial segregation of Mn-Si (intermetallic) and Mn-C (carbide) interactions in these structures can be understood from the differing geometrical requirements of C and Si. Rather than macroscopically separating into distinct phases, though, the two bonding types are tightly interwoven, with most Mn atoms being on the interfaces. DFT chemical pressure analysis reveals a driving force stabilizing these interfaces: the major local pressures acting between the Mn atoms in the Mn-Si and Mn-C systems are of opposite signs. Joining the intermetallic and carbide domains together then provides substantial relief to these local pressures, an effect we term epitaxial stabilization.

Publication types

  • Research Support, U.S. Gov't, Non-P.H.S.