Long-Term Vitamin E-Deficient Mice Exhibit Cognitive Dysfunction via Elevation of Brain Oxidation

J Nutr Sci Vitaminol (Tokyo). 2015;61(5):362-8. doi: 10.3177/jnsv.61.362.

Abstract

Vitamin E inhibits oxidative processes in living tissues. We produced vitamin E-deficient mice by feeding them a vitamin E-deficient diet to verify the influence of chronic vitamin E deficiency on cognitive function. We measured cognitive function over a 5-d period using the Morris water maze task, as well as antioxidant enzyme activity and lipid peroxidation in discrete brain regions, and total serum cholesterol content. Three- and six-mo-old vitamin E-deficient and age-matched control mice were used. In addition, 24-mo-old mice were used as an aged-model. In the 3-mo-old mice, cognitive function in the vitamin E-deficient (short-term vitamin E-deficient) group was significantly impaired compared to age-matched controls. Although the lipid peroxidation products in the cerebral cortex, cerebellum and hippocampus did not significantly differ in 3-mo-old mice, the levels in the 6-mo-old vitamin E-deficient (long-term vitamin E-deficient) mice were significantly increased compared to age-matched controls. Serum cholesterol content was also significantly increased in the short- and long-term vitamin E-deficient mice compared to their respective age-matched controls. These results indicate that chronic vitamin E deficiency may slowly accelerate brain oxidation. Thus, vitamin E concentrations may need to be monitored in order to prevent the risk of cognitive dysfunction, even under normal conditions.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Antioxidants / metabolism
  • Cerebral Cortex / physiopathology*
  • Cholesterol / blood
  • Cognition
  • Cognition Disorders / blood*
  • Cognition Disorders / etiology
  • Hippocampus / physiopathology*
  • Lipid Peroxidation
  • Male
  • Mice
  • Mice, Inbred C57BL
  • Oxidative Stress*
  • Vitamin E / blood
  • Vitamin E Deficiency / blood*
  • Vitamin E Deficiency / complications

Substances

  • Antioxidants
  • Vitamin E
  • Cholesterol