Measuring Femoral Torsion In Vivo Using Freehand 3-D Ultrasound Imaging

Ultrasound Med Biol. 2016 Feb;42(2):619-23. doi: 10.1016/j.ultrasmedbio.2015.10.014. Epub 2015 Nov 27.

Abstract

Despite variation in bone geometry, muscle and joint function is often investigated using generic musculoskeletal models. Patient-specific bone geometry can be obtained from computerised tomography, which involves ionising radiation, or magnetic resonance imaging (MRI), which is costly and time consuming. Freehand 3-D ultrasound provides an alternative to obtain bony geometry. The purpose of this study was to determine the accuracy and repeatability of 3-D ultrasound in measuring femoral torsion. Measurements of femoral torsion were performed on 10 healthy adults using MRI and 3-D ultrasound. Measurements of femoral torsion from 3-D ultrasound were, on average, smaller than those from MRI (mean difference = 1.8°; 95% confidence interval: -3.9°, 7.5°). MRI and 3-D ultrasound had Bland and Altman repeatability coefficients of 3.1° and 3.7°, respectively. Accurate measurements of femoral torsion were obtained with 3-D ultrasound offering the potential to acquire patient-specific bone geometry for musculoskeletal modelling. Three-dimensional ultrasound is non-invasive and relatively inexpensive and can be integrated into gait analysis.

Keywords: Femoral torsion; Freehand 3-D ultrasound imaging; Gait analysis.

Publication types

  • Comparative Study
  • Evaluation Study
  • Research Support, Non-U.S. Gov't
  • Validation Study

MeSH terms

  • Adult
  • Algorithms*
  • Female
  • Femur / diagnostic imaging*
  • Humans
  • Image Enhancement / methods
  • Image Interpretation, Computer-Assisted / methods*
  • Imaging, Three-Dimensional / methods*
  • Magnetic Resonance Imaging / methods
  • Male
  • Middle Aged
  • Reproducibility of Results
  • Rotation
  • Sensitivity and Specificity
  • Ultrasonography / methods*
  • Young Adult