Characterization of the role of the photosensitizer, deuteporfin, in the detection of lymphatic metastases in a pancreatic cancer xenograft model

Oncol Lett. 2015 Sep;10(3):1430-1436. doi: 10.3892/ol.2015.3441. Epub 2015 Jun 30.

Abstract

Currently, the use of photosensitizers as tracer agents to detect lymphatic metastases is a developing area of study in the field of pancreatic cancer treatment. In the present study, deuteporfin, a novel photosensitizer, was used as a tracer agent to detect lymphatic metastases in a pancreatic cancer xenograft model. The biodistribution and pharmacokinetics of deuteporfin, following intravenous administration and injection of deuteporfin into the left rear footpad, were investigated in Sprague-Dawley rats. The increased difference in deuteporfin concentration between the cancerous and normal tissues was directly observed through the application of a Wood's lamp. In addition, the highly lymphatic BxPC-3-LN5 human metastatic pancreatic cancer cell line was generated from BxPC-3 cells using a continuous screening and seeding method in vivo. A xenograft model of the BxPC-3-LN5 human pancreatic cancer cell line transplanted into the left rear footpad of nude mice, was established. The effects of deuteporfin as a tracer agent in the detection of lymphatic metastases were then characterized in the pancreatic cancer xenograft model. Following intravenous administration, deuteporfin was rapidly enriched in the pancreas and popliteal fossa lymph nodes compared with that of the left rear footpad administration group. In addition, deuteporfin appeared to be selectively enriched in the cancerous pancreatic lymph nodes of the pancreatic cancer xenograft model. These results indicated that deuteporfin may be developed as a novel photosensitizer tracer agent for the detection of lymphatic metastases in pancreatic cancer. The advantages of deuteporfin are that it has a selective tumor-targeting effect due to high tissue uptake, and that it may be administered intravenously and is therefore suitable for surgery.

Keywords: lymphatic metastases; photodynamic therapy; photosensitizer; tracer agent.