Solid-State Thin-Film Supercapacitors with Ultrafast Charge/Discharge Based on N-Doped-Carbon-Tubes/Au-Nanoparticles-Doped-MnO2 Nanocomposites

Nano Lett. 2016 Jan 13;16(1):40-7. doi: 10.1021/acs.nanolett.5b02489. Epub 2015 Dec 1.

Abstract

Although carbonaceous materials possess long cycle stability and high power density, their low-energy density greatly limits their applications. On the contrary, metal oxides are promising pseudocapacitive electrode materials for supercapacitors due to their high-energy density. Nevertheless, poor electrical conductivity of metal oxides constitutes a primary challenge that significantly limits their energy storage capacity. Here, an advanced integrated electrode for high-performance pseudocapacitors has been designed by growing N-doped-carbon-tubes/Au-nanoparticles-doped-MnO2 (NCTs/ANPDM) nanocomposite on carbon fabric. The excellent electrical conductivity and well-ordered tunnels of NCTs together with Au nanoparticles of the electrode cause low internal resistance, good ionic contact, and thus enhance redox reactions for high specific capacitance of pure MnO2 in aqueous electrolyte, even at high scan rates. A prototype solid-state thin-film symmetric supercapacitor (SSC) device based on NCTs/ANPDM exhibits large energy density (51 Wh/kg) and superior cycling performance (93% after 5000 cycles). In addition, the asymmetric supercapacitor (ASC) device assembled from NCTs/ANPDM and Fe2O3 nanorods demonstrates ultrafast charge/discharge (10 V/s), which is among the best reported for solid-state thin-film supercapacitors with both electrodes made of metal oxide electroactive materials. Moreover, its superior charge/discharge behavior is comparable to electrical double layer type supercapacitors. The ASC device also shows superior cycling performance (97% after 5000 cycles). The NCTs/ANPDM nanomaterial demonstrates great potential as a power source for energy storage devices.

Keywords: Energy storage; all-solid thin-film supercapacitors; electrical conductivity; metal oxides; ultrafast charge/discharge.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Electric Power Supplies*
  • Electrodes
  • Ferric Compounds / chemistry
  • Gold / chemistry
  • Manganese Compounds / chemistry
  • Metal Nanoparticles / chemistry*
  • Nanocomposites / chemistry*
  • Nanotubes / chemistry
  • Nanotubes, Carbon / chemistry*
  • Oxides / chemistry

Substances

  • Ferric Compounds
  • Manganese Compounds
  • Nanotubes, Carbon
  • Oxides
  • ferric oxide
  • Gold
  • manganese dioxide