[Impact of Phosphogypsum Wastes on the Wheat Growth and CO2 Emissions and Evaluation of Economic-environmental Benefit]

Huan Jing Ke Xue. 2015 Aug;36(8):3099-105.
[Article in Chinese]

Abstract

Phosphogypsum is a phosphorus chemical waste which has not been managed and reused well, resultantly, causing environmental pollution and land-occupation. Phosphogypsum wastes were used as a soil amendment to assess the effect on wheat growth, yield and CO2 emissions from winter wheat fields. Its economic and environmental benefits were analyzed at the same time. The results showed that wheat yield was increased by 37.71% in the treatment of phosphogypsum of 2 100 kg x hm(-2). Compared with the control treatment, throughout the wheat growing season, CO2 emission was accumulatively reduced by 3% in the treatment of phosphogypsum waste of 1050 kg x hm(-2), while reduced by 8% , 10% , and 6% during the jointing stage, heading date and filling period of wheat, respectively; while CO2 emission was accumulatively reduced by 7% in the treatment of phosphogypsum waste of 2 100 kg x hm(-2) throughout the wheat growing season, as reduced by 11% , 4% , and 12% during the reviving wintering stage, heading date and filling period of wheat, respectively. It was better for CO2 emission reduction in the treatment of a larger amount of phosphogypsum waste. In the case of application of phosphogypsum waste residue within a certain range, the emission intensity of CO2 ( CO2 emissions of per unit of fresh weight or CO2 emissions of per unit of yield) , spike length, fresh weight and yield showed a significantly negative correlation--the longer the ear length, the greater fresh weight and yield and the lower the CO2 emissions intensity. As to the carbon trading, phosphogypsum utilization was of high economic and environmental benefits. Compared with the control, the ratio of input to output changed from 1: 8.3 to 1: 10.7, which in the same situation of investment the output could be increased by 28.92% ; phosphogypsum as a greenhouse gas reducing agent in the wheat field, it could decrease the cost and increase the environmental benefit totally about 290 yuan per unit of ton. The results demonstrated phosphogypsum wastes could obviously decrease the CO2 emission from field soil and had a great potential to control agricultural greenhouse gases. Hopefully it has an important application perspective for the low-carbon, ecological and sustainable agricultural development.

MeSH terms

  • Agriculture / economics
  • Calcium Sulfate / analysis*
  • Carbon Dioxide / analysis*
  • Gases
  • Phosphorus / analysis*
  • Soil
  • Soil Pollutants / analysis*
  • Triticum / drug effects*
  • Triticum / growth & development

Substances

  • Gases
  • Soil
  • Soil Pollutants
  • phosphogypsum
  • Carbon Dioxide
  • Phosphorus
  • Calcium Sulfate