A Transferable Force Field for Primary, Secondary, and Tertiary Alkanolamines

J Chem Theory Comput. 2013 Apr 9;9(4):2097-103. doi: 10.1021/ct301098s. Epub 2013 Mar 11.

Abstract

Due to the importance of alkanolamines as solvents in several industrial processes and the absence of a dedicated transferable force field for them, we have developed an anisotropic united-atom (AUA4) force field for primary, secondary, and tertiary alkanolamines. In addition to correctly reproducing the experimental densities, additional properties for six different molecules have been verified at different temperatures including vaporization enthalpies, vapor pressures, normal boiling points, critical temperatures, and critical densities. A qualitative analysis of the radial distribution function of pure monoethanolamine has also been carried out. Furthermore, the viscosity coefficients were also calculated as a function of temperature and found to be in good agreement with experimental data. Finally, and perhaps most strikingly, the prediction of the excess enthalpies of alkanolamines in aqueous solutions has been found to be in excellent qualitative agreement with experimental data.