Thermodynamic universality of quantum Carnot engines

Phys Rev E Stat Nonlin Soft Matter Phys. 2015 Oct;92(4):042126. doi: 10.1103/PhysRevE.92.042126. Epub 2015 Oct 12.

Abstract

The Carnot statement of the second law of thermodynamics poses an upper limit on the efficiency of all heat engines. Recently, it has been studied whether generic quantum features such as coherence and quantum entanglement could allow for quantum devices with efficiencies larger than the Carnot efficiency. The present study shows that this is not permitted by the laws of thermodynamics-independent of the model. We will show that rather the definition of heat has to be modified to account for the thermodynamic cost of maintaining non-Gibbsian equilibrium states. Our theoretical findings are illustrated for two experimentally relevant examples.