Nervous Facilitation in Cardiodynamic Response of Exercising Athletes to Superimposed Mental Tasks: Implications in Depressive Disorder

Clin Pract Epidemiol Ment Health. 2015 Sep 23:11:166-73. doi: 10.2174/1745017901511010166. eCollection 2015.

Abstract

Motor commands to perform exercise tasks may also induce activation of cardiovascular centres to supply the energy needs of the contracting muscles. Mental stressors per se may also influence cardiovascular homeostasis. We investigated the cardiovascular response of trained runners simultaneously engaged in mental and physical tasks to establish if aerobically trained subjects could develop, differently from untrained ones, nervous facilitation in the brain cardiovascular centre. Methods : Cardiovascular responses of 8 male middle-distance runners (MDR), simultaneously engaged in mental (colour-word interference test) and physical (cycle ergometer exercise) tasks, were compared with those of 8 untrained subjects. Heart rate, cardiac (CI) and stroke indexes were assessed by impedance cardiography while arterial blood pressures were assessed with a brachial sphygmomanometer. Results : Only in MDR simultaneous engagement in mental and physical tasks induced a significant CI increase which was higher (p<0.05) than that obtained on summing CI values from each task separately performed. Conclusion : Aerobic training, when performed together with a mental effort, induced a CI oversupply which allowed a redundant oxygen delivery to satisfy a sudden fuel demand from exercising muscles by utilizing aerobic sources of ATP, thus shifting the anaerobic threshold towards a higher work load. From data of this study it may also be indirectly stated that, in patients with major depressive disorder, the promotion of regular low-intensity exercise together with mental engagement could ameliorate the perceived physical quality of life, thus reducing their heart risk associated with physical stress.

Keywords: Cardiodynamic response; major depressive disorder; nervous facilitation; nervous motor command.