Compressible and monolithic microporous polymer sponges prepared via one-pot synthesis

Sci Rep. 2015 Nov 4:5:15957. doi: 10.1038/srep15957.

Abstract

Compressible and monolithic microporous polymers (MPs) are reported. MPs were prepared as monoliths via a Sonogashira-Hagihara coupling reaction of 1,3,5-triethynylbenzene (TEB) with the bis(bromothiophene) monomer (PBT-Br). The polymers were reversibly compressible, and were easily cut into any form using a knife. Microscopy studies on the MPs revealed that the polymers had tubular microstructures, resembling those often found in marine sponges. Under compression, elastic buckling of the tube bundles was observed using an optical microscope. MP-0.8, which was synthesized using a 0.8:1 molar ratio of PBT-Br to TEB, showed microporosity with a BET surface area as high as 463 m(2)g(-1). The polymer was very hydrophobic, with a water contact angle of 145° and absorbed 7-17 times its own weight of organic liquids. The absorbates were released by simple compression, allowing recyclable use of the polymer. MPs are potential precursors of structured carbon materials; for example, a partially graphitic material was obtained by pyrolysis of MP-0.8, which showed a similar tubular structure to that of MP-0.8.

Publication types

  • Research Support, Non-U.S. Gov't