Fast One-Pot Synthesis of MoS2/Crumpled Graphene p-n Nanonjunctions for Enhanced Photoelectrochemical Hydrogen Production

ACS Appl Mater Interfaces. 2015 Nov 25;7(46):25685-92. doi: 10.1021/acsami.5b06668. Epub 2015 Nov 10.

Abstract

Aerosol processing enables the preparation of hierarchical graphene nanocomposites with special crumpled morphology in high yield and in a short time. Using modular insertion of suitable precursors in the starting solution, it is possible to synthesize different types of graphene-based materials ranging from heteroatom-doped graphene nanoballs to hierarchical nanohybrids made up by nitrogen-doped crumpled graphene nanosacks that wrap finely dispersed MoS2 nanoparticles. These materials are carefully investigated by microscopic (SEM, standard and HR TEM), diffraction (grazing incidence X-ray diffraction (GIXRD)) and spectroscopic (high resolution photoemission, Raman and UV-visible spectroscopy) techniques, evidencing that nitrogen dopants provide anchoring sites for MoS2 nanoparticles, whereas crumpling of graphene sheets drastically limits aggregation. The activity of these materials is tested toward the photoelectrochemical production of hydrogen, obtaining that N-doped graphene/MoS2 nanohybrids are seven times more efficient with respect to single MoS2 because of the formation of local p-n MoS2/N-doped graphene nanojunctions, which allow an efficient charge carrier separation.

Keywords: graphene oxide; hydrogen evolution reaction; nanohybrids; photocatalysis; transition metal dichalcogenides.

Publication types

  • Research Support, Non-U.S. Gov't