Novosphingobium oryzae sp. nov., a potential plant-promoting endophytic bacterium isolated from rice roots

Int J Syst Evol Microbiol. 2016 Jan;66(1):302-307. doi: 10.1099/ijsem.0.000718. Epub 2015 Oct 28.

Abstract

A novel endophytic bacterium, strain ZYY112T, isolated from rice roots, was characterized by a polyphasic approach. In phylogenetic analyses based on 16S rRNA gene sequences, ZYY112T showed highest sequence similarity to Novosphingobium sediminicola HU1-AH51T (97.2 %) and less than 97 % similarity with respect to other Novosphingobium species with validly published names. The DNA G+C content of strain ZYY112T was 60.8 mol%. The level of DNA-DNA relatedness between strain ZYY112T and N. sediminicola DSM 27057T was 33.7 % (reciprocal 5.2 %), which supported the suggestion that ZYY112T represented a novel species of the genus Novosphingobium. Ubiquinone Q-10 was the unique respiratory quinone (100 %). The polar lipid profile contained diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylglycerol, sphingoglycolipid, an unknown aminolipid and an unknown phospholipid. The major fatty acids of strain ZYY112T were summed feature 8 (consisting of C18 : 1ω7c and/or C18 : 1ω6c), summed feature 3 (consisting of C16 : 1ω7c and/or C16 : 1ω6c), C14 : 0 2-OH and C16 : 0. The major polyamine of ZYY112T was spermidine, which is a characteristic trait of the genus Novosphingobium. Characterization by genotypic, chemotaxonomic and phenotypic analysis indicated that strain ZYY112T represents a novel species of the genus Novosphingobium, for which the name Novosphingobium oryzae sp. nov. is proposed. The type strain is ZYY112T ( = ACCC 06131T = JCM 30537T).

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Bacterial Typing Techniques
  • Base Composition
  • China
  • DNA, Bacterial / genetics
  • Fatty Acids / chemistry
  • Molecular Sequence Data
  • Nucleic Acid Hybridization
  • Oryza / microbiology*
  • Phospholipids / chemistry
  • Phylogeny*
  • Plant Roots / microbiology
  • RNA, Ribosomal, 16S / genetics
  • Sequence Analysis, DNA
  • Spermidine / chemistry
  • Sphingomonadaceae / classification*
  • Sphingomonadaceae / genetics
  • Sphingomonadaceae / isolation & purification
  • Ubiquinone / chemistry

Substances

  • DNA, Bacterial
  • Fatty Acids
  • Phospholipids
  • RNA, Ribosomal, 16S
  • Ubiquinone
  • Ubiquinone Q2
  • Spermidine