Engineering a Polyketide Synthase for In Vitro Production of Adipic Acid

ACS Synth Biol. 2016 Jan 15;5(1):21-7. doi: 10.1021/acssynbio.5b00153. Epub 2015 Nov 10.

Abstract

Polyketides have enormous structural diversity, yet polyketide synthases (PKSs) have thus far been engineered to produce only drug candidates or derivatives thereof. Thousands of other molecules, including commodity and specialty chemicals, could be synthesized using PKSs if composing hybrid PKSs from well-characterized parts derived from natural PKSs was more efficient. Here, using modern mass spectrometry techniques as an essential part of the design-build-test cycle, we engineered a chimeric PKS to enable production one of the most widely used commodity chemicals, adipic acid. To accomplish this, we introduced heterologous reductive domains from various PKS clusters into the borrelidin PKS' first extension module, which we previously showed produces a 3-hydroxy-adipoyl intermediate when coincubated with the loading module and a succinyl-CoA starter unit. Acyl-ACP intermediate analysis revealed an unexpected bottleneck at the dehydration step, which was overcome by introduction of a carboxyacyl-processing dehydratase domain. Appending a thioesterase to the hybrid PKS enabled the production of free adipic acid. Using acyl-intermediate based techniques to "debug" PKSs as described here, it should one day be possible to engineer chimeric PKSs to produce a variety of existing commodity and specialty chemicals, as well as thousands of chemicals that are difficult to produce from petroleum feedstocks using traditional synthetic chemistry.

Keywords: adipic acid; polyketide synthase; tandem mass-spectrometry.

Publication types

  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Adipates / metabolism*
  • Chromatography, Liquid
  • Metabolic Engineering / methods*
  • Polyketide Synthases / chemistry
  • Polyketide Synthases / metabolism*
  • Protein Structure, Tertiary
  • Tandem Mass Spectrometry

Substances

  • Adipates
  • adipic acid
  • Polyketide Synthases