Effects of Developmental Activation of the Aryl Hydrocarbon Receptor by 2,3,7,8-Tetrachlorodibenzo-p-dioxin on Long-term Self-renewal of Murine Hematopoietic Stem Cells

Environ Health Perspect. 2016 Jul;124(7):957-65. doi: 10.1289/ehp.1509820. Epub 2015 Oct 23.

Abstract

Background: Human epidemiological and animal studies suggest that developmental exposure to contaminants that activate the aryl hydrocarbon receptor (AHR) lead to suppression of immune system function throughout life. The persistence of immune deficiency throughout life suggests that the cellular target of AHR activation is a fetal hematopoietic progenitor or stem cell.

Objectives: The aim of this study was to identify the effects of transplacental exposure to an AHR agonist on long-term self-renewal of fetal hematopoietic stem cells.

Methods: Pregnant C57BL/6 or AHR+/- mice were exposed to the AHR agonist, 2,3,7,8-tetra-​chlorodibenzo-p-dioxin (TCDD). On day 14 of gestation, hematopoietic progenitors from wild-type or AHR-deficient fetuses were placed into in vitro T-lymphocyte differentiation cultures to identify the effects of transplacental TCDD on AHR activation in the fetus. We next analyzed the fetal hematopoietic progenitor cells for changes in reactive oxygen species (ROS). Finally, hematopoietic progenitors from fetuses exposed transplacentally to TCDD were mixed 1:1 with cells from congenic controls and used to reconstitute lethally irradiated recipients for analysis of long-term self-renewal potential.

Results: Our findings suggested that the effects of TCDD on the developing hematopoietic system were mediated by direct AHR activation in the fetus. Furthermore, developmental AHR activation by TCDD increased ROS in the fetal hematopoietic stem cells, and the elevated ROS was associated with a reduced capacity of the TCDD-exposed fetal cells to compete with control cells in a mixed competitive irradiation/reconstitution assay.

Conclusions: Our findings indicate that AHR activation by TCDD in the fetus during pregnancy leads to impairment of long-term self-renewal of hematopoietic stem cells.

Citation: Laiosa MD, Tate ER, Ahrenhoerster LS, Chen Y, Wang D. 2016. Effects of developmental activation of the aryl hydrocarbon receptor by 2,3,7,8-tetrachlorodibenzo-p-dioxin on long-term self-renewal of murine hematopoietic stem cells. Environ Health Perspect 124:957-965; http://dx.doi.org/10.1289/ehp.1509820.

Publication types

  • Research Support, N.I.H., Extramural

MeSH terms

  • Animals
  • Basic Helix-Loop-Helix Transcription Factors
  • Gene Expression Regulation, Developmental / drug effects*
  • Hazardous Substances / toxicity*
  • Hematopoietic Stem Cells
  • Mice
  • Mice, Inbred C57BL
  • Polychlorinated Dibenzodioxins / toxicity*
  • Receptors, Aryl Hydrocarbon / metabolism*

Substances

  • Ahr protein, mouse
  • Basic Helix-Loop-Helix Transcription Factors
  • Hazardous Substances
  • Polychlorinated Dibenzodioxins
  • Receptors, Aryl Hydrocarbon