Development and Characterization of a Guinea Pig-Adapted Sudan Virus

J Virol. 2015 Oct 21;90(1):392-9. doi: 10.1128/JVI.02331-15. Print 2016 Jan 1.

Abstract

Infections with Sudan virus (SUDV), a member of the genus Ebolavirus, result in a severe hemorrhagic fever with a fatal outcome in over 50% of human cases. The paucity of prophylactics and therapeutics against SUDV is attributed to the lack of a small-animal model to screen promising compounds. By repeatedly passaging SUDV within the livers and spleens of guinea pigs in vivo, a guinea pig-adapted SUDV variant (SUDV-GA) uniformly lethal to these animals, with a 50% lethal dose (LD50) of 5.3 × 10(-2) 50% tissue culture infective doses (TCID50), was developed. Animals infected with SUDV-GA developed high viremia and died between 9 and 14 days postinfection. Several hallmarks of SUDV infection, including lymphadenopathy, increased liver enzyme activities, and coagulation abnormalities, were observed. Virological analyses and gross pathology, histopathology, and immunohistochemistry findings indicate that SUDV-GA replicates in the livers and spleens of infected animals similarly to SUDV infections in nonhuman primates. These developments will accelerate the development of specific medical countermeasures in preparation for a future disease outbreak due to SUDV.

Importance: A disease outbreak due to Ebola virus (EBOV), suspected to have emerged during December 2013 in Guinea, with over 11,000 dead and 28,000 infected, is finally winding down. Experimental EBOV vaccines and treatments were administered to patients under compassionate circumstances with promising results, and availability of an approved countermeasure appears to be close. However, the same range of experimental candidates against a potential disease outbreak caused by other members of the genus Ebolavirus, such as Sudan virus (SUDV), is not readily available. One bottleneck contributing to this situation is the lack of a small-animal model to screen promising drugs in an efficient and economical manner. To address this, we have generated a SUDV variant (SUDV-GA) that is uniformly lethal to guinea pigs. Animals infected with SUDV-GA develop disease similar to that of SUDV-infected humans and monkeys. We believe that this model will significantly accelerate the development of life-saving measures against SUDV infections.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Adaptation, Biological
  • Animals
  • Disease Models, Animal*
  • Ebolavirus / growth & development*
  • Ebolavirus / pathogenicity
  • Guinea Pigs
  • Hemorrhagic Fever, Ebola / pathology*
  • Hemorrhagic Fever, Ebola / virology*
  • Lethal Dose 50
  • Liver / pathology
  • Liver / virology
  • Spleen / pathology
  • Spleen / virology
  • Survival Analysis