Black-CuO: surface-enhanced Raman scattering and infrared properties

Nanoscale. 2015 Nov 21;7(43):18299-304. doi: 10.1039/c5nr04783h.

Abstract

Large surface area samples of nanotextured black CuO were prepared by chemical etching of Cu for use in surface-enhanced Raman scattering (SERS). The SERS intensity of a self-assembled monolayer (SAM) of thiophenol was proportional to the thickness of a nanoscale-conformal Au film deposited by magnetron sputtering over the black CuO. A very high SERS yield of ∼10(4) counts per s per mW was observed for the thiophenol SAM on the thickest Au films studied here. Synchrotron X-ray photoelectron spectroscopy was used to confirm that the surface of the chemically etched Cu was covered by high purity CuO. IR spectral characterization of the black CuO showed a close to linear increase in reflectivity from 25 to 100% over the range of 4000-500 cm(-1) wavenumbers (or 2.5-20 μm in wavelength). Sensing applications and thermal effects in SERS are discussed.

Publication types

  • Research Support, Non-U.S. Gov't