Generalized analytical model based on harmonic coupling for hybrid plasmonic modes: comparison with numerical and experimental results

Opt Express. 2015 Oct 19;23(21):27376-90. doi: 10.1364/OE.23.027376.

Abstract

Metal nanoparticle arrays have proved useful for different applications due to their ability to enhance electromagnetic fields within a few tens of nanometers. This field enhancement results from the excitation of various plasmonic modes at certain resonance frequencies. In this article, we have studied an array of metallic nanocylinders placed on a thin metallic film. A simple analytical model is proposed to explain the existence of the different types of modes that can be excited in such a structure. Owing to the cylinder array, the structure can support localized surface plasmon (LSP) modes. The LSP mode couples to the propagating surface plasmon (PSP) mode of the thin film to give rise to the hybrid lattice plasmon (HLP) mode and anti-crossing phenomenon. Due to the periodicity of the array, the Bragg modes (BM) are also excited in the structure. We have calculated analytically the resonance frequencies of the BM, LSP and the corresponding HLP, and have verified the calculations by rigorous numerical methods. Experimental results obtained in the Kretschmann configuration also validate the proposed analytical model. The dependency of the resonance frequencies of these modes on the structural parameters such as cylinder diameter, height and the periodicity of the array is shown. Such a detailed study can offer insights on the physical phenomenon that governs the excitation of various plasmonic modes in the system. It is also useful to optimize the structure as per required for the different applications, where such types of structures are used.