Terahertz generation in lithium niobate driven by Ti:sapphire laser pulses and its limitations

Opt Lett. 2014 Sep 15;39(18):5403-6. doi: 10.1364/OL.39.005403.

Abstract

We experimentally investigate the limits of 800-nm-to-terahertz (THz) energy conversion in lithium niobate at room temperature driven by amplified Ti:sapphire laser pulses with tilted pulse front. The influence of the pump central wavelength, pulse duration, and fluence on THz generation is studied. We achieved a high peak efficiency of 0.12% using transform limited 150 fs pulses and observed saturation of the optical-to-THz conversion efficiency at a fluence of 15 mJ/cm(2) for this pulse duration. We experimentally identify two main limitations for the scaling of optical-to-THz conversion efficiencies: (i) the large spectral broadening of the optical pump spectrum in combination with large angular dispersion of the tilted pulse front and (ii) free-carrier absorption of THz radiation due to multi-photon absorption of the 800 nm radiation.