Nicergoline inhibits human platelet Ca(2+) signalling through triggering a microtubule-dependent reorganization of the platelet ultrastructure

Br J Pharmacol. 2016 Jan;173(1):234-47. doi: 10.1111/bph.13361. Epub 2015 Dec 5.

Abstract

Background and purpose: Recently, we demonstrated that a pericellular Ca(2+) recycling system potentiates agonist-evoked Ca(2+) signalling and granule secretion in human platelets and hypothesized a role for the membrane complex (MC) in orchestrating the accumulation of Ca(2+) in the pericellular region. Previous work has demonstrated that treatment with high concentrations of nicergoline may disrupt the MC through an ability to trigger a re-organization of the dense tubular system. Experiments were therefore performed to assess whether nicergoline-induced changes in platelet ultrastructure affects thrombin-evoked Ca(2+) fluxes and dense granule secretion.

Experimental approach: Thrombin-evoked Ca(2+) fluxes were monitored in Fura-2- or Fluo-5N-loaded human platelets, or using platelet suspensions containing Fluo-4 or Rhod-5N K(+) salts. Fluorescence microscopy was utilized to monitor microtubule structure and intracellular Ca(2+) store distribution in TubulinTracker- and Fluo-5N-loaded platelets respectively. Dense granule secretion was monitored using luciferin-luciferase.

Key results: Nicergoline treatment inhibited thrombin-evoked Ca(2+) signalling and induced alterations in the microtubule structure and the distribution of intracellular Ca(2+) stores in platelets. Nicergoline altered the generation and spreading of thrombin-induced pericellular Ca(2+) signals and almost completely prevented dense granule secretion. Stabilization of microtubules using taxol reversed most effects of nicergoline on platelet Ca(2+) signalling and partially reversed its effects on dense granule secretion.

Conclusions and implications: Nicergoline-induced alterations to platelet ultrastructure disrupt platelet Ca(2+) signalling in a manner that would be predicted if the MC had been disrupted. These data suggest that nicergoline may be a useful prototype for the discovery of novel MC-disrupting anti-thrombotics.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Blood Platelets / drug effects*
  • Blood Platelets / metabolism
  • Blood Platelets / ultrastructure*
  • Calcium / metabolism
  • Calcium Signaling / drug effects*
  • Humans
  • Microscopy, Fluorescence
  • Microtubules / drug effects*
  • Microtubules / ultrastructure
  • Nicergoline / antagonists & inhibitors
  • Nicergoline / pharmacology*
  • Paclitaxel / pharmacology
  • Secretory Vesicles / drug effects
  • Thrombin / antagonists & inhibitors
  • Thrombin / pharmacology

Substances

  • Thrombin
  • Nicergoline
  • Paclitaxel
  • Calcium