Half-Life of Sulfonylureas in HNF1A and HNF4A Human MODY Patients is not Prolonged as Suggested by the Mouse Hnf1a(-/-) Model

Curr Pharm Des. 2015;21(39):5736-48. doi: 10.2174/1381612821666151008124036.

Abstract

Objectives: Sulfonylurea derivatives are widely used for clinical treatment of human subjects with Maturity Onset Diabetes of the Young (MODY) caused by mutations in HNF-1α or HNF-4α despite the mechanism leading to their hypersensitivity is incompletely understood. In Hnf1a(-/-) mice, serum concentrations and half-life of sulfonylurea derivatives are strongly increased. We thus hypothesized that reduced sulfonylurea derivatives clearance stands behind their therapeutic potential in human HNF1A/HNF4A MODY subjects.

Design and methods: Single doses of 3 mg glipizide and 5 mg glibenclamide/glyburide were administered sequentially to seven HNF1A/HNF4A MODY subjects and six control individuals matched for their age, BMI and CYP2C9 genotype. Pharmacokinetic (plasma concentration levels, Cmax, tmax, t1/2, AUC) and pharmacodynamic parameters (glycemia, C-peptide and insulin plasma levels) were followed for 24 hours after drug administration.

Results: We provide the first evidence on the pharmacokinetics and pharmacodynamics of sulfonylurea derivatives in human MODY subjects. The half-life of glipizide did not change, and reached 3.8±0.7 and 3.7±1.8 h in the MODY and control subjects, respectively. The half-life of glibenclamide was increased only in some MODY subjects (t1/2 9.5±6.7 and 5.0±1.4 h, respectively). Importantly, the intra- individual responses of MODY (but control) subjects to glipizide and glibenclamide treatment were highly correlated. With regards to pharmacodynamics, we observed a differential response of control but not MODY subjects to the doses of glipizide and glibenclamide applied.

Conclusions: We rejected the hypothesis that all human MODY-associated mutations in HNF1A / HNF4A induce changes in the pharmacokinetics of sulfonylureas in humans analogically to the Hnf1a(-/-) mouse model.

Publication types

  • Research Support, Non-U.S. Gov't
  • Review

MeSH terms

  • Adolescent
  • Adult
  • Animals
  • Case-Control Studies
  • Diabetes Mellitus, Type 2 / drug therapy*
  • Diabetes Mellitus, Type 2 / genetics
  • Diabetes Mellitus, Type 2 / metabolism
  • Disease Models, Animal*
  • Female
  • Germ-Line Mutation
  • Half-Life
  • Hepatocyte Nuclear Factor 1-alpha / genetics*
  • Hepatocyte Nuclear Factor 4 / genetics*
  • Humans
  • Male
  • Mice
  • Mice, Knockout
  • Middle Aged
  • Sulfonylurea Compounds / adverse effects
  • Sulfonylurea Compounds / pharmacokinetics*
  • Young Adult

Substances

  • HNF1A protein, human
  • HNF4A protein, human
  • Hepatocyte Nuclear Factor 1-alpha
  • Hepatocyte Nuclear Factor 4
  • Sulfonylurea Compounds