Mobile genetic elements are involved in bacterial sociality

Mob Genet Elements. 2015 Feb 4;5(1):7-11. doi: 10.1080/2159256X.2015.1006110. eCollection 2015 Jan-Feb.

Abstract

Mobile genetic elements in bacteria are enriched in genes participating in social behaviors, suggesting an evolutionary link between gene mobility and social evolution. Cooperative behaviors, like the production of secreted public good molecules, are susceptible to the invasion of non-cooperative individuals, and their evolutionary maintenance requires mechanisms ensuring that benefits are directed preferentially to cooperators. In order to investigate the reasons for the mobility of public good genes, we designed a synthetic bacterial system where we control and quantify the transfer of public good production genes. In our recent study, we have experimentally shown that horizontal transfer helps maintain public good production in the face of both non-producer organisms and non-producer plasmids. Transfer spreads genes to neighboring cells, thus increasing relatedness and directing a higher proportion of public good benefits to producers. The effect is the strongest when public good genes undergo epidemics dynamics, making horizontal transfer especially relevant for pathogenic bacteria that repeatedly infect new hosts and base their virulence on costly public goods. The promotion of cooperation may be a general consequence of horizontal gene transfer in prokaryotes. Our work has an intriguing parallel, cultural transmission, where horizontal transfer, such as teaching, may preferentially promote cooperative behaviors.

Keywords: bacterial cooperation; genetic relatedness; horizontal gene transfer; mobile genetic elements; plasmid transfer; public good production; social evolution; synthetic biology.