Hypocretin/orexin prevents recovery from sickness

Biomed Rep. 2015 Sep;3(5):648-650. doi: 10.3892/br.2015.491. Epub 2015 Jul 17.

Abstract

Sickness behavior is defined as states of lethargy, depression, anxiety, loss of appetite, hypersomnia, hyperalgesia, reduction of grooming and failure to concentrate that can be induced by inflammatory diseases, such as infections and cancer. Recent findings revealed that the lipopolysaccharide (LPS) injection causes lethargy as a consequence of the inhibition of hypocretin signaling. The hypocretin system maintains the vigilance state in various physiological processes. In order to investigate the sleep arousal system against sickness behavior, LPS-induced sickness behavior was examined in hypocretin-ataxin-3 transgenic mice, whose hypocretin neurons were postnatally ablated. Sleep-wake activity was determined following the administration of LPS at Zeitgeber time (ZT) 8.0 in ataxin-3 transgenic mice, and the age-, gender-matched wild-type littermates. LPS injection induced increases in non-rapid eye movement (REM) sleep in the matched wild-type littermates. In addition, a further increase in periods of sleep according to the loss of hypocretin neurons was identified in the ataxin-3 transgenic mice. A marked reduction of awakening during ZT12-ZT18 was observed as expected following LPS injection in the mouse lines. The increase in the period of non-REM sleep was not observed on the next day following LPS administration in either of the mouse lines. Complete recovery of physical activity was not observed in the matched wild-type littermates. Ataxin-3 transgenic mice recovered their physical activity to the same level as that on the first day before LPS administration. These results suggest the possibility that a faster recovery is the result of deeper resting according to the absence of hypocretin neurons, as ataxin-3 transgenic mice demonstrated more non-REM sleep.

Keywords: hypocretin; orexin; sickness behaviour; sleep; wakefulness.