Methods to Increase the Metabolic Stability of (18)F-Radiotracers

Molecules. 2015 Sep 3;20(9):16186-220. doi: 10.3390/molecules200916186.

Abstract

The majority of pharmaceuticals and other organic compounds incorporating radiotracers that are considered foreign to the body undergo metabolic changes in vivo. Metabolic degradation of these drugs is commonly caused by a system of enzymes of low substrate specificity requirement, which is present mainly in the liver, but drug metabolism may also take place in the kidneys or other organs. Thus, radiotracers and all other pharmaceuticals are faced with enormous challenges to maintain their stability in vivo highlighting the importance of their structure. Often in practice, such biologically active molecules exhibit these properties in vitro, but fail during in vivo studies due to obtaining an increased metabolism within minutes. Many pharmacologically and biologically interesting compounds never see application due to their lack of stability. One of the most important issues of radiotracers development based on fluorine-18 is the stability in vitro and in vivo. Sometimes, the metabolism of (18)F-radiotracers goes along with the cleavage of the C-F bond and with the rejection of [(18)F]fluoride mostly combined with high background and accumulation in the skeleton. This review deals with the impact of radiodefluorination and with approaches to stabilize the C-F bond to avoid the cleavage between fluorine and carbon.

Keywords: deuterium; fluorine-18; metabolism; stability.

Publication types

  • Review

MeSH terms

  • Animals
  • Carbon / chemistry
  • Fluorine / chemistry
  • Fluorine Radioisotopes / chemistry*
  • Fluorine Radioisotopes / pharmacokinetics
  • Humans
  • Models, Chemical
  • Molecular Structure
  • Radiopharmaceuticals / chemistry*
  • Radiopharmaceuticals / pharmacokinetics

Substances

  • Fluorine Radioisotopes
  • Radiopharmaceuticals
  • Fluorine
  • Carbon