Carbon-Free CoO Mesoporous Nanowire Array Cathode for High-Performance Aprotic Li-O2 Batteries

ACS Appl Mater Interfaces. 2015 Oct 21;7(41):23182-9. doi: 10.1021/acsami.5b07003. Epub 2015 Oct 7.

Abstract

Although various kinds of catalysts have been developed for aprotic Li-O2 battery application, the carbon-based cathodes are still vulnerable to attacks from the discharge intermediates or products, as well as the accompanying electrolyte decomposition. To ameliorate this problem, the free-standing and carbon-free CoO nanowire array cathode was purposely designed for Li-O2 batteries. The single CoO nanowire formed as a special mesoporous structure, owing even comparable specific surface area and pore volume to the typical Super-P carbon particles. In addition to the highly selective oxygen reduction/evolution reactions catalytic activity of CoO cathodes, both excellent discharge specific capacity and cycling efficiency of Li-O2 batteries were obtained, with 4888 mAh gCoO(-1) and 50 cycles during 500 h period. Owing to the synergistic effect between elaborate porous structure and selective intermediate absorption on CoO crystal, a unique bimodal growth phenomenon of discharge products was occasionally observed, which further offers a novel mechanism to control the formation/decomposition morphology of discharge products in nanoscale. This research work is believed to shed light on the future development of high-performance aprotic Li-O2 batteries.

Keywords: CoO nanowire; Li−O2 battery; Li−air; carbon-free cathode; synergistic effect.

Publication types

  • Research Support, Non-U.S. Gov't