Electron deficient nonplanar β-octachlorovanadylporphyrin as a highly efficient and selective epoxidation catalyst for olefins

Dalton Trans. 2015 Oct 28;44(40):17720-9. doi: 10.1039/c5dt02349a. Epub 2015 Sep 23.

Abstract

We have synthesized 2,3,7,8,12,13,17,18-octachloro-meso-tetraphenylporphyrinatooxidovanadium(iv) (VOTPPCl8) and characterized by various spectroscopic (UV-Vis, IR and EPR) techniques, MALDI-TOF mass spectrometry and elemental analysis. The DFT optimized structure of VOTPPCl8 in CH3CN exhibited a highly nonplanar saddle shape conformation of the porphyrin macrocycle. The cyclic voltammogram of VOTPPCl8 showed a 500 mV anodic shift in the first ring reduction potential and 220 mV in the first ring oxidation potential compared to VOTPP indicating the electron deficient nature of the porphyrin π-system and further proving the existence of a nonplanar conformation of the macrocycle in solution. Further, VOTPPCl8 exhibited very high thermal stability till 390 °C as indicated in its thermogram. The oxidation state of the metal ion (V(IV)) was confirmed by EPR spectroscopy and VOTPPCl8 exhibited an axial spectrum which corresponds to the axially compressed dxy(1) configuration. VOTPPCl8 was utilised for the selective epoxidation of various olefins in good yields with very high TOF numbers (6566-9650 h(-1)) in the presence of H2O2 as an oxidant and NaHCO3 as a promoter in a CH3CN/H2O mixture. The oxidoperoxidovanadium(v) species is expected to be the intermediate during the catalytic reaction which is probed by (51)V NMR spectroscopy and MALDI-TOF mass analysis. Notably, VOTPPCl8 is stable after the catalytic reaction and doesn't form a μ-oxo dimer due to the highly electron deficient nonplanar porphyrin core and can be reused for several cycles.