Synthesis of functionalized fluorescent gold nanoclusters for acid phosphatase sensing

Nanoscale. 2015 Oct 21;7(39):16372-80. doi: 10.1039/c5nr04826e.

Abstract

A novel and convenient one-pot but two-step synthesis of fluorescent gold nanoclusters, incorporating glutathione (GSH) and 11-mercaptoundecanoic acid (MUA) as the functionalized ligands (i.e. AuNCs@GSH/MUA), is demonstrated. Herein, the mixing of HAuCl4 and GSH in aqueous solution results in the immediate formation of non-fluorescent GSH-Au(+) complexes, and then a class of ∼2.6 nm GSH-coated AuNCs (AuNCs@GSH) with mild orange-yellow fluorescence after several days. Interestingly, the intense orange-red emitting ∼1.7 nm AuNCs@GSH/MUA can be synthesized within seconds by introducing an alkaline aqueous solution of MUA into the GSH-Au(+) complexes or AuNC@GSH solution. Subsequently, a reliable AuNC@GSH/MUA-based real-time assay of acid phosphatase (ACP) is established for the first time, inspired by the selective coordination of Fe(3+) with surface ligands of AuNCs, the higher binding affinity between the pyrophosphate ion (PPi) and Fe(3+), and the hydrolysis of PPi into orthophosphate by ACP. Our fluorescent chemosensor can also be applied to assay ACP in a real biological sample and, furthermore, to screen the inhibitor of ACP. This report paves a new avenue for synthesizing AuNCs based on either the bottom-up reduction or top-down etching method, establishing real-time fluorescence assays for ACP by means of PPi as the substrate, and further exploring the sensing applications of fluorescent AuNCs.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Acid Phosphatase / analysis*
  • Animals
  • Biosensing Techniques / methods*
  • Cattle
  • Fluorescence*
  • Gold / chemistry*
  • Metal Nanoparticles / chemistry*

Substances

  • Gold
  • Acid Phosphatase