Microwave-Assisted Synthesis of Carbon-Based (N, Fe)-Codoped TiO2 for the Photocatalytic Degradation of Formaldehyde

Nanoscale Res Lett. 2015 Dec;10(1):360. doi: 10.1186/s11671-015-1061-6. Epub 2015 Sep 16.

Abstract

A microwave-assisted sol-gel method was used to synthesize (N, Fe)-codoped activated carbon (AC)/TiO2 photocatalyst for enhanced optical absorption in the visible light region. The prepared samples were characterized via X-ray diffraction, scanning electron microscopy, transmission electron microscopy, Fourier transform infrared spectroscopy, Brunauer-Emmett-Teller analysis, ultraviolet-visible light spectroscopy, X-ray photoelectron spectroscopy, and photoluminescence spectroscopy. The results showed no significant difference in the surface area of AC/TiO2 (approximately 500 m(2)/g) after doping. TiO2 was uniformly distributed on the surface of AC, which exhibited coexisting anatase and rutile structures with a mean crystallite diameter of approximately 20 nm. N and Fe monodoping on AC/TiO2 reduced the energy band gap of TiO2 to 2.81 and 2.79 eV, respectively, which mainly attributed to the impurity energy formed in the energy gap of TiO2. In (N, Fe)-codoped AC/TiO2, N and Fe are incorporated into the TiO2 framework and narrow the band gap of TiO2 to 2.58 eV, thereby causing a large redshift. Codoping of N and Fe enhanced the production of hydroxyl radicals (⋅OH) and improved the photocatalytic activity of the resultant AC/TiO2 compared with those of undoped and N- or Fe-monodoped AC/TiO2. N-Fe-AC/TiO2 degraded 93 % of the formaldehyde under Xe-lamp irradiation. Moreover, the photocatalyst was easily recyclable. In summary, a novel and efficient method to mineralize low concentrations of HCHO in wastewater was discovered.

Keywords: Active carbon; Codoped AC/TiO2; Formaldehyde; Microwave irradiation; Photocatalytic degradation.