Surface lattice solitons in diffusive nonlinear media with spatially modulated nonlinearity

Opt Express. 2015 Sep 7;23(18):24048-56. doi: 10.1364/OE.23.024048.

Abstract

Two families of gap and twisted surface lattice solitons in diffusive nonlinear periodic media with spatially modulated nonlinearity are reported. It is shown that the existence and stability of such solitons are extremely spatially modulated nonlinearity sensitive. For self-focusing nonlinearity, gap surface solitons belonging to the semi-infinite gap are stable in whole existence domain, twisted surface solitons are also linearly stable in low modulated strength region and a very narrow unstable region near the upper cutoff appears in high modulated strength region. In the self-defocusing case, surface gap solitons belonging to the first gap can propagate stably in whole existence domain except for an extremely narrow region close to the Bloch band, twisted solitons belonging to this gap are unstable in the entire existence domain.