Dispersion of polarization coupling, localized and collective plasmon modes in a metallic photonic crystal mapped by Mueller Matrix Ellipsometry

Opt Express. 2015 Aug 24;23(17):22800-15. doi: 10.1364/OE.23.022800.

Abstract

We report a spectroscopic Mueller matrix experimental study of a plasmonic photonic crystal consisting of gold hemispheroidal particles (lateral radius 54 nm, height 25 nm) arranged on a square lattice (lattice constant 210 nm) and supported by a glass substrate. Strong polarization coupling is observed for ultraviolet wavelengths and around the surface plasmon resonance for which the off-block-diagonal Mueller matrix elements show pronounced anisotropies. Due to the Rayleigh anomalies, the block-diagonal Mueller matrix elements produce a direct image of the Brillouin Zone (BZ) boundaries of the lattice and resonances are observed at the M-point in the first and at the X-point in the second BZ. These elements show also the dispersion of the localized surface plasmon resonance.