Highly efficient tunable mid-infrared optical parametric oscillator pumped by a wavelength locked, Q-switched Er:YAG laser

Opt Express. 2015 Aug 10;23(16):20812-9. doi: 10.1364/OE.23.020812.

Abstract

A highly efficient and stable mid-infrared optical parametric oscillator is demonstrated, pumped by an electro-optic Q-switched Er:YAG laser with operating wavelength locked at 1645 nm by a volume Bragg grating. The oscillator, based on MgO-doped periodically poled lithium niobate (MgO:PPLN) crystal, yields a maximum overall average output power in excess of 1 W, corresponding to a conversion efficiency of 35.5% and a slope efficiency of 43.6%. The signal and idler wavelengths of the OPO are around ~2.7 μm and ~4.3 μm, respectively, corresponding to the two peak absorption bands of CO(2). Lasing characteristics of the oscillator, including the time evolution of the pump, signal and idler pulses at different pump power levels, are also investigated. Temperature tuning of the MgO:PPLN crystal gives signal and idler ranges of 2.67 to 2.72 μm and 4.17 to 4.31 μm, respectively.