Dual-Matrix Sampling for Scalable Translucent Material Rendering

IEEE Trans Vis Comput Graph. 2015 Mar;21(3):363-74. doi: 10.1109/TVCG.2014.2385059.

Abstract

This paper introduces a scalable algorithm for rendering translucent materials with complex lighting. We represent the light transport with a diffusion approximation by a dual-matrix representation with the Light-to-Surface and Surface-to-Camera matrices. By exploiting the structures within the matrices, the proposed method can locate surface samples with little contribution by using only subsampled matrices and avoid wasting computation on these samples. The decoupled estimation of irradiance and diffuse BSSRDFs also allows us to have a tight error bound, making the adaptive diffusion approximation more efficient and accurate. Experiments show that our method outperforms previous methods for translucent material rendering, especially in large scenes with massive translucent surfaces shaded by complex illumination.