Fabrication and Performance of Noble Metal Promoted Birnessite Catalysts for Complete Oxidation of Formaldehyde at Low Temperatures

J Nanosci Nanotechnol. 2015 Apr;15(4):2887-95. doi: 10.1166/jnn.2015.9163.

Abstract

Noble metal (Au, Ag, Pd and Pt) promoted birnessite (Bir) catalysts were successfully prepared and tested for catalytic oxidation of formaldehyde (HCHO). The catalysts were characterized by means of X-ray diffraction (XRD), transmission electron microscopy (TEM), hydrogen temperature programmed reduction (H2-TPR), inductively coupled plasma atomic emission spectroscopy (ICP-AES) and N2 adsorption-desorption. The activities of noble metal (Au, Ag, Pd and Pt) promoted birnessite catalysts follow the order of 1.0Pt/Bir > 1.0Pd/Bir > Bir > 1.0Ag/Bir > 1.0Au/Bir, revealing that the loading of Pd and Pt improves the catalytic activity of birnessite, but the loading of Ag and Au slightly decreases the catalytic activity of birnessite. Effects of the Pt loading amount were also investigated on the activity of Pt/Bir catalysts for HCHO oxidation. Pt/Bir with a Pt loading of 1.5 wt% (1.5 Pt/Bir), which has the best reduction properties, was found to be the most efficient catalyst. Over this catalyst, HCHO could be completely oxidized into CO2 and H2O at 70°. 1.5 Pt/Bir also shows good catalytic stability under the HCHO oxidation atmosphere. The differences in the catalytic activity of these materials are largely attributed to their reducibility as well as the dispersion of metal nanoparticles, but are not directly related to their specific surface areas.

Publication types

  • Research Support, Non-U.S. Gov't