Durability Improvement of Solid Electrolyte CO2 Sensor Against Humidity Variations

J Nanosci Nanotechnol. 2015 Jan;15(1):404-7. doi: 10.1166/jnn.2015.8360.

Abstract

The sensing materials of potentiometric CO2 sensors utilize alkali/alkali-earth metal carbonates or their combinations. However, lithium carbonate easily responds to humidity resulting in incorrect information regarding CO2 concentration. Herein, the authors report a new sensing material combination (Li2CO3/BaCO3/LiOH/Ba(OH)2 (1:2:0.05:0.1 molar ratio)) for a potentiometric CO2 sensor that is not affected by humidity. The electromotive force (EMF) of the sensor using a combination of Li2CO3, BaCO3, LiOH, and Ba(OH)2 drifted by 1.5% when the relative humidity was changed from 25% to 70%, which is superior to a drift of 6% of a sensor using Li2CO3 and BaCO3, as this sensing material is known to be robust to changes in humidity.

Publication types

  • Research Support, Non-U.S. Gov't