Plastic Response of Tracheids in Pinus pinaster in a Water-Limited Environment: Adjusting Lumen Size instead of Wall Thickness

PLoS One. 2015 Aug 25;10(8):e0136305. doi: 10.1371/journal.pone.0136305. eCollection 2015.

Abstract

The formation of wood results from cambial activity and its anatomical properties reflect the variability of environmental conditions during the growing season. Recently, it was found that wood density variations in conifers growing under cold-limited environment result from the adjustment of cell wall thickness (CWT) to temperature. Additionally, it is known that intra-annual density fluctuations (IADFs) are formed in response to precipitation after the summer drought. Although IADFs are frequent in Mediterranean conifers no study has yet been conducted to determine if these structures result from the adjustment of lumen diameter (LD) or CWT to soil water availability. Our main objective is to investigate the intra-ring variation of wood anatomical features (LD and CWT) in Pinus pinaster Ait. growing under a water-limited environment. We compared the tracheidograms of LD and CWT for the years 2010-2013 in P. pinaster growing in the west coast of Portugal. Our results suggest a close association between LD and soil moisture content along the growing season, reinforcing the role of water availability in determining tracheid size. Compared with CWT, LD showed a higher intra- and inter-annual variability suggesting its strong adjustment value to variations in water availability. The formation of a latewood IADF appears to be predisposed by higher rates of cell production in spring and triggered by early autumn precipitation. Our findings reinforce the crucial role of water availability on cambial activity and wood formation in Mediterranean conifers, and emphasize the high plasticity of wood anatomical features under Mediterranean climate.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Climate
  • Environment*
  • Pinus*
  • Portugal
  • Soil
  • Temperature
  • Wood

Substances

  • Soil

Grants and funding

This study was supported by the Fundação para a Ciência e a Tecnologia, Ministério da Educação e Ciência (FCT) co-financed by Compete, through the projects PTDC/AAC-AMB/111675/2009 and EXPL/AAG-GLO/1885/2013, and CFE strategic program UI0134-UID/BIA/04004/2013. Filipe Campelo was supported by a postdoctoral research grant (SFRH/BPD/47822/2008) from FCT with funds from POPH (Portuguese Operational Human Potential Program) and QREN Portugal (Portuguese National Strategic Reference Framework).