Modification of targets related to the Entner-Doudoroff/pentose phosphate pathway route for methyl-D-erythritol 4-phosphate-dependent carotenoid biosynthesis in Escherichia coli

Microb Cell Fact. 2015 Aug 12:14:117. doi: 10.1186/s12934-015-0301-x.

Abstract

Background: In engineered strains of Escherichia coli, bioconversion efficiency is determined by not only metabolic flux but also the turnover efficiency of relevant pathways. Methyl-D-erythritol 4-phosphate (MEP)-dependent carotenoid biosynthesis in E. coli requires efficient turnover of precursors and balanced flux among precursors, cofactors, and cellular energy. However, the imbalanced supply of glyceraldehyde 3-phosphate (G3P) and pyruvate precursors remains the major metabolic bottleneck. To address this problem, we manipulated various genetic targets related to the Entner-Doudoroff (ED)/pentose phosphate (PP) pathways. Systematic target modification was conducted to improve G3P and pyruvate use and rebalance the precursor and redox fluxes.

Results: Carotenoid production was improved to different degrees by modifying various targets in the Embden-Meyerhof-Parnas (EMP) and ED pathways, which directed metabolic flux from the EMP pathway towards the ED pathway. The improvements in yield were much greater when the MEP pathway was enhanced. The coordinated modification of ED and MEP pathway targets using gene expression enhancement and protein coupling strategies in the pgi deletion background further improved carotenoid synthesis. The fine-tuning of flux at the branch point between the ED and PP pathways was important for carotenoid biosynthesis. Deletion of pfkAB instead of pgi reduced the carotenoid yield. This suggested that anaplerotic flux of G3P and pyruvate might be necessary for carotenoid biosynthesis. Improved carotenoid yields were accompanied by increased biomass and decreased acetate overflow. Therefore, efficient use of G3P and pyruvate precursors resulted in a balance among carotenoid biosynthesis, cell growth, and by-product metabolism.

Conclusions: An efficient and balanced MEP-dependent carotenoid bioconversion strategy involving both the ED and PP pathways was implemented by the coordinated modification of diverse central metabolic pathway targets. In this strategy, enhancement of the ED pathway for efficient G3P and pyruvate turnover was crucial for carotenoid production. The anaplerotic role of the PP pathway was important to supply precursors for the ED pathway. A balanced metabolic flux distribution among precursor supply, NADPH generation, and by-product pathways was established.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Bioreactors
  • Carotenoids / biosynthesis*
  • Erythritol / analogs & derivatives
  • Erythritol / chemistry
  • Erythritol / metabolism*
  • Escherichia coli / genetics
  • Escherichia coli / metabolism*
  • Glyceraldehyde 3-Phosphate / metabolism
  • Metabolic Engineering
  • Metabolic Networks and Pathways
  • Pentose Phosphate Pathway*
  • Pyruvic Acid / metabolism

Substances

  • Glyceraldehyde 3-Phosphate
  • Carotenoids
  • Pyruvic Acid
  • Erythritol