Positive Effect of Carbon Sources on Natural Transformation in Escherichia coli: Role of Low-Level Cyclic AMP (cAMP)-cAMP Receptor Protein in the Derepression of rpoS

J Bacteriol. 2015 Oct;197(20):3317-28. doi: 10.1128/JB.00291-15. Epub 2015 Aug 10.

Abstract

Natural plasmid transformation of Escherichia coli is a complex process that occurs strictly on agar plates and requires the global stress response factor σ(S). Here, we showed that additional carbon sources could significantly enhance the transformability of E. coli. Inactivation of phosphotransferase system genes (ptsH, ptsG, and crr) caused an increase in the transformation frequency, and the addition of cyclic AMP (cAMP) neutralized the promotional effect of carbon sources. This implies a negative role of cAMP in natural transformation. Further study showed that crp and cyaA mutations conferred a higher transformation frequency, suggesting that the cAMP-cAMP receptor protein (CRP) complex has an inhibitory effect on transformation. Moreover, we observed that rpoS is negatively regulated by cAMP-CRP in early log phase and that both crp and cyaA mutants show no transformation superiority when rpoS is knocked out. Therefore, it can be concluded that both the crp and cyaA mutations derepress rpoS expression in early log phase, whereby they aid in the promotion of natural transformation ability. We also showed that the accumulation of RpoS during early log phase can account for the enhanced transformation aroused by additional carbon sources. Our results thus demonstrated that the presence of additional carbon sources promotes competence development and natural transformation by reducing cAMP-CRP and, thus, derepressing rpoS expression during log phase. This finding could contribute to a better understanding of the relationship between nutrition state and competence, as well as the mechanism of natural plasmid transformation in E. coli.

Importance: Escherichia coli, which is not usually considered to be naturally transformable, was found to spontaneously take up plasmid DNA on agar plates. Researching the mechanism of natural transformation is important for understanding the role of transformation in evolution, as well as in the transfer of pathogenicity and antibiotic resistance genes. In this work, we found that carbon sources significantly improve transformation by decreasing cAMP. Then, the low level of cAMP-CRP derepresses the general stress response regulator RpoS via a biphasic regulatory pattern, thereby contributing to transformation. Thus, we demonstrate the mechanism by which carbon sources affect natural transformation, which is important for revealing information about the interplay between nutrition state and competence development in E. coli.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Bacterial Proteins / genetics
  • Bacterial Proteins / metabolism*
  • Carbon / metabolism*
  • Cyclic AMP / metabolism*
  • Cyclic AMP Receptor Protein / genetics
  • Cyclic AMP Receptor Protein / metabolism*
  • Escherichia coli / genetics
  • Escherichia coli / metabolism*
  • Escherichia coli Proteins / genetics
  • Escherichia coli Proteins / metabolism*
  • Gene Deletion
  • Gene Expression Regulation, Bacterial
  • Sigma Factor / genetics
  • Sigma Factor / metabolism*
  • Transformation, Bacterial / genetics
  • Transformation, Bacterial / physiology*

Substances

  • Bacterial Proteins
  • Cyclic AMP Receptor Protein
  • Escherichia coli Proteins
  • Sigma Factor
  • crp protein, E coli
  • sigma factor KatF protein, Bacteria
  • Carbon
  • Cyclic AMP