In vivo evolution of resistance of Pseudomonas aeruginosa strains isolated from patients admitted to an intensive care unit: mechanisms of resistance and antimicrobial exposure

J Antimicrob Chemother. 2015 Nov;70(11):3004-13. doi: 10.1093/jac/dkv228. Epub 2015 Aug 9.

Abstract

Objectives: The main objective of this study was to investigate the relationship among the in vivo acquisition of antimicrobial resistance in Pseudomonas aeruginosa clinical isolates, the underlying molecular mechanisms and previous exposure to antipseudomonal agents.

Methods: PFGE was used to study the molecular relatedness of the strains. The MICs of ceftazidime, cefepime, piperacillin/tazobactam, imipenem, meropenem, ciprofloxacin and amikacin were determined. Outer membrane protein profiles were assessed to study OprD expression. RT-PCR was performed to analyse ampC, mexB, mexD, mexF and mexY expression. The presence of mutations was analysed through DNA sequencing.

Results: We collected 17 clonally related paired isolates [including first positive samples (A) and those with MICs increased ≥4-fold (B)]. Most B isolates with increased MICs of imipenem, meropenem and ceftazidime became resistant to these drugs. The most prevalent resistance mechanisms detected were OprD loss (65%), mexB overexpression (53%), ampC derepression (29%), quinolone target gene mutations (24%) and increased mexY expression (24%). Five (29%) B isolates developed multidrug resistance. Meropenem was the most frequently (71%) received treatment, explaining the high prevalence of oprD mutations and likely mexB overexpression. Previous exposure to ceftazidime showed a higher impact on selection of increased MICs than previous exposure to piperacillin/tazobactam.

Conclusions: Stepwise acquisition of resistance has a critical impact on the resistance phenotypes of P. aeruginosa, leading to a complex scenario for finding effective antimicrobial regimens. In the clinical setting, meropenem seems to be the most frequent driver of multidrug resistance development, while piperacillin/tazobactam, in contrast to ceftazidime, seems to be the β-lactam least associated with the selection of resistance mechanisms.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Anti-Bacterial Agents / pharmacology
  • Anti-Bacterial Agents / therapeutic use*
  • Bacterial Outer Membrane Proteins / genetics
  • Drug Resistance, Bacterial*
  • Electrophoresis, Gel, Pulsed-Field
  • Evolution, Molecular*
  • Gene Expression Profiling
  • Humans
  • Intensive Care Units
  • Microbial Sensitivity Tests
  • Molecular Typing
  • Pseudomonas Infections / drug therapy*
  • Pseudomonas Infections / microbiology*
  • Pseudomonas aeruginosa / classification
  • Pseudomonas aeruginosa / drug effects*
  • Pseudomonas aeruginosa / genetics*
  • Real-Time Polymerase Chain Reaction
  • beta-Lactamases / genetics

Substances

  • Anti-Bacterial Agents
  • Bacterial Outer Membrane Proteins
  • beta-Lactamases