Analysis of trans-2,6-difluoro-4'-(N,N-dimethylamino)stilbene (DFS) in biological samples by liquid chromatography-tandem mass spectrometry: metabolite identification and pharmacokinetics

Anal Bioanal Chem. 2015 Sep;407(24):7319-32. doi: 10.1007/s00216-015-8893-x. Epub 2015 Jul 31.

Abstract

The metabolism of a promising antineoplastic agent, trans-2,6-difluoro-4'-(N,N-dimethylamino)stilbene (DFS), was studied in mouse, rat, and human liver microsomes using liquid chromatography-tandem mass spectrometry (LC-MS/MS) with the multiple reaction monitoring-information-dependent acquisition-enhanced product ion scan (MRM-IDA-EPI) method. Ten putative metabolites were identified and the structures of four metabolites were confirmed using authentic standards. Since trans-2,6-difluoro-4'-(N-methylamino)stilbene (DMDFS, M1) was present in all species as metabolite and displayed in vitro growth inhibition superior to DFS, its pharmacokinetic profiles were examined in Sprague-Dawley rats using DFS as a comparator. A reliable LC-MS/MS multiple reaction monitoring (MRM) method was subsequently developed and validated for the simultaneous quantification of both DFS and DMDFS in rat plasma for this purpose. Upon intravenous administration (4 mg/kg), DFS had a moderate clearance (Cl = 62.7 ± 23.2 mL/min/kg), terminal elimination half-life (t 1/2 λZ = 299 ± 73 min), and mean transit time (MTT = 123 ± 14 min) with demethylation metabolism accounting for about 10 % of its total clearance. DMDFS possessed an intravenous pharmacokinetic profile similar to DFS. During oral dosing (10 mg/kg) where both DFS and DMDFS were absorbed rapidly, the oral bioavailability of DFS was approximately 2-fold greater than that of DMDFS (DFS: F = 42.1 ± 12.8 %; DMDFS: F = 18.7 ± 3.9 %). Interestingly, the DMDFS exposure after oral dosing of DFS (10 mg/kg) was comparable to that after oral administration of DMDFS (10 mg/kg) alone. As DFS displayed potent anticancer activities and excellent pharmacokinetic profiles, it appears to be a favorable candidate for further pharmaceutical development.

Keywords: Liquid chromatography-tandem mass spectrometry; Metabolite identification; Pharmacokinetics; trans-2,6-Difluoro-4′-(N,N-dimethylamino)stilbene; trans-2,6-Difluoro-4′-(N-methylamino)stilbene.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't
  • Validation Study

MeSH terms

  • Animals
  • Chromatography, Liquid / methods*
  • Male
  • Microsomes, Liver / metabolism
  • Rats
  • Rats, Sprague-Dawley
  • Stilbenes / analysis*
  • Stilbenes / pharmacokinetics*
  • Tandem Mass Spectrometry / methods*

Substances

  • 2,6-difluoro-4'-(N,N-dimethylamino)stilbene
  • Stilbenes