The Phylogeny and Evolutionary Timescale of Muscoidea (Diptera: Brachycera: Calyptratae) Inferred from Mitochondrial Genomes

PLoS One. 2015 Jul 30;10(7):e0134170. doi: 10.1371/journal.pone.0134170. eCollection 2015.

Abstract

Muscoidea is a significant dipteran clade that includes house flies (Family Muscidae), latrine flies (F. Fannidae), dung flies (F. Scathophagidae) and root maggot flies (F. Anthomyiidae). It is comprised of approximately 7000 described species. The monophyly of the Muscoidea and the precise relationships of muscoids to the closest superfamily the Oestroidea (blow flies, flesh flies etc) are both unresolved. Until now mitochondrial (mt) genomes were available for only two of the four muscoid families precluding a thorough test of phylogenetic relationships using this data source. Here we present the first two mt genomes for the families Fanniidae (Euryomma sp.) (family Fanniidae) and Anthomyiidae (Delia platura (Meigen, 1826)). We also conducted phylogenetic analyses containing of these newly sequenced mt genomes plus 15 other species representative of dipteran diversity to address the internal relationship of Muscoidea and its systematic position. Both maximum-likelihood and Bayesian analyses suggested that Muscoidea was not a monophyletic group with the relationship: (Fanniidae + Muscidae) + ((Anthomyiidae + Scathophagidae) + (Calliphoridae + Sarcophagidae)), supported by the majority of analysed datasets. This also infers that Oestroidea was paraphyletic in the majority of analyses. Divergence time estimation suggested that the earliest split within the Calyptratae, separating (Tachinidae + Oestridae) from the remaining families, occurred in the Early Eocene. The main divergence within the paraphyletic muscoidea grade was between Fanniidae + Muscidae and the lineage ((Anthomyiidae + Scathophagidae) + (Calliphoridae + Sarcophagidae)) which occurred in the Late Eocene.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Diptera / genetics*
  • Evolution, Molecular*
  • Genome, Mitochondrial*
  • Nucleic Acid Conformation
  • Phylogeny*
  • RNA / chemistry

Substances

  • RNA

Grants and funding

DY was funded by the National Natural Science Foundation of China (31320103902) and the National "Twelfth Five-Year" Plan for Science and Technology Support (2012BAD19B00). SLC was funded by an Australian Research Council Future Fellowship (FT120100746) The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.