[Effect of fertilization depth on 15N-urea absorption, utilization and loss in dwarf apple trees]

Ying Yong Sheng Tai Xue Bao. 2015 Mar;26(3):755-60.
[Article in Chinese]

Abstract

Five-year-old 'Fuji'3/M26/M. hupehensis Rehd. seedlings were treated by 15N tracer to study the effects of fertilization depth (0, 20 and 40 cm) on 15N-urea absorption, distribution, utilization and loss in soil. The results showed that the plant leaf area, chlorophyll content and total N of apple leaves in 20 cm treatment were obviously higher than 0 cm and 40 cm treatments. The 15N derived from fertilizer (Ndff) in different organs of apple plant under different depths were significantly different, and the Ndff was the highest in roots at the full-bloom stage, and then in perennial branches. During the shoot rapid-growing and flower bud differentiation stage, the Ndff of new organs higher than that of the storage organs, and the Ndff of different organs were high level at fruit rapid-expanding stage, and the Ndff of fruit was the highest. The distribution ratio of 15N at fruit maturity stage was significantly different under fertilization depths, and that of the vegetative and repro- ductive organs of 20 cm treatment were obviously higher than 0 cm and 40 cm treatments, but that of the storage organs of 20 cm treatment was lower than 0 cm and 40 cm treatments. At fruit maturity stage, 15N utilization rate of apple plant of 20 cm treatment was 24.0%, which was obviously higher than 0 cm (14.1%) and 40 cm (7.6%) treatments, and 15N loss rate was 54.0%, which was obviously lower than 0 cm (67.8%) and 40 cm (63.5%) treatments. With the increase of fertilization depths, the N residue in soil increased sharply.

MeSH terms

  • Fertilizers*
  • Fruit
  • Malus / physiology*
  • Nitrogen Isotopes / analysis
  • Plant Leaves
  • Plant Roots
  • Soil / chemistry*
  • Urea / metabolism*

Substances

  • Fertilizers
  • Nitrogen Isotopes
  • Soil
  • Urea