14-3-3γ Regulates Lipopolysaccharide-Induced Inflammatory Responses and Lactation in Dairy Cow Mammary Epithelial Cells by Inhibiting NF-κB and MAPKs and Up-Regulating mTOR Signaling

Int J Mol Sci. 2015 Jul 22;16(7):16622-41. doi: 10.3390/ijms160716622.

Abstract

As a protective factor for lipopolysaccharide (LPS)-induced injury, 14-3-3γ has been the subject of recent research. Nevertheless, whether 14-3-3γ can regulate lactation in dairy cow mammary epithelial cells (DCMECs) induced by LPS remains unknown. Here, the anti-inflammatory effect and lactation regulating ability of 14-3-3γ in LPS-induced DCMECs are investigated for the first time, and the molecular mechanisms responsible for their effects are explored. The results of qRT-PCR showed that 14-3-3γ overexpression significantly inhibited the mRNA expression of tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), interleukin-1β (IL-1β) and inducible nitric oxide synthase (iNOS). Enzyme-linked immunosorbent assay (ELISA) analysis revealed that 14-3-3γ overexpression also suppressed the production of TNF-α and IL-6 in cell culture supernatants. Meanwhile, CASY-TT Analyser System showed that 14-3-3γ overexpression clearly increased the viability and proliferation of cells. The results of kit methods and western blot analysis showed that 14-3-3γ overexpression promoted the secretion of triglycerides and lactose and the synthesis of β-casein. Furthermore, the expression of genes relevant to nuclear factor-κB (NF-κB) and mitogen-activated protein kinase (MAPKs) and lactation-associated proteins were assessed by western blot, and the results suggested that 14-3-3γ overexpression inactivated the NF-κB and MAPK signaling pathways by down-regulating extracellular signal regulated protein kinase (ERK), p38 mitogen-activated protein kinase (p38MAPK) and inhibitor of NF-κB (IκB) phosphorylation levels, as well as by inhibiting NF-κB translocation. Meanwhile, 14-3-3γ overexpression enhanced the expression levels of β-casein, mammalian target of rapamycin (mTOR), ribosomal protein S6 kinase 1 (S6K1), serine/threonine protein kinase Akt 1 (AKT1), sterol regulatory element binding protein 1 (SREBP1) and peroxisome proliferator-activated receptor gamma (PPARγ). These results suggest that 14-3-3γ was able to attenuate the LPS-induced inflammatory responses and promote proliferation and lactation in LPS-induced DCMECs by inhibiting the activation of the NF-κB and MAPK signaling pathways and up-regulating mTOR signaling pathways to protect against LPS-induced injury.

Keywords: 14-3-3γ; MAPKs; NF-κB; dairy cow mammary epithelial cells; inflammatory responses; mTOR signaling pathway.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • 14-3-3 Proteins / genetics
  • 14-3-3 Proteins / metabolism*
  • Animals
  • Caseins / genetics
  • Caseins / metabolism*
  • Cattle
  • Cells, Cultured
  • Epithelial Cells / metabolism*
  • Extracellular Signal-Regulated MAP Kinases / metabolism
  • Female
  • Humans
  • Interleukins / genetics
  • Interleukins / metabolism
  • Lactose / metabolism
  • Lipopolysaccharides / pharmacology
  • MAP Kinase Signaling System*
  • Mammary Glands, Animal / cytology
  • Mammary Glands, Animal / metabolism*
  • NF-kappa B / metabolism*
  • Nitric Oxide Synthase Type II / genetics
  • Nitric Oxide Synthase Type II / metabolism
  • TOR Serine-Threonine Kinases / metabolism*
  • Tumor Necrosis Factor-alpha / genetics
  • Tumor Necrosis Factor-alpha / metabolism
  • p38 Mitogen-Activated Protein Kinases / metabolism

Substances

  • 14-3-3 Proteins
  • Caseins
  • Interleukins
  • Lipopolysaccharides
  • NF-kappa B
  • Tumor Necrosis Factor-alpha
  • Nitric Oxide Synthase Type II
  • TOR Serine-Threonine Kinases
  • Extracellular Signal-Regulated MAP Kinases
  • p38 Mitogen-Activated Protein Kinases
  • Lactose